2,297 research outputs found

    Estimating drizzle drop size and precipitation rate using two-colour lidar measurements

    Get PDF
    A method to estimate the size and liquid water content of drizzle drops using lidar measurements at two wavelengths is described. The method exploits the differential absorption of infrared light by liquid water at 905 nm and 1.5 μm, which leads to a different backscatter cross section for water drops larger than ≈50 μm. The ratio of backscatter measured from drizzle samples below cloud base at these two wavelengths (the colour ratio) provides a measure of the median volume drop diameter D0. This is a strong effect: for D0=200 μm, a colour ratio of ≈6 dB is predicted. Once D0 is known, the measured backscatter at 905 nm can be used to calculate the liquid water content (LWC) and other moments of the drizzle drop distribution. The method is applied to observations of drizzle falling from stratocumulus and stratus clouds. High resolution (32 s, 36 m) profiles of D0, LWC and precipitation rate R are derived. The main sources of error in the technique are the need to assume a value for the dispersion parameter μ in the drop size spectrum (leading to at most a 35% error in R) and the influence of aerosol returns on the retrieval (≈10% error in R for the cases considered here). Radar reflectivities are also computed from the lidar data, and compared to independent measurements from a colocated cloud radar, offering independent validation of the derived drop size distributions

    Theory and observations of ice particle evolution in cirrus using Doppler radar: evidence for aggregation

    Get PDF
    Vertically pointing Doppler radar has been used to study the evolution of ice particles as they sediment through a cirrus cloud. The measured Doppler fall speeds, together with radar-derived estimates for the altitude of cloud top, are used to estimate a characteristic fall time tc for the `average' ice particle. The change in radar reflectivity Z is studied as a function of tc, and is found to increase exponentially with fall time. We use the idea of dynamically scaling particle size distributions to show that this behaviour implies exponential growth of the average particle size, and argue that this exponential growth is a signature of ice crystal aggregation.Comment: accepted to Geophysical Research Letter

    The formation of ice in a long-lived supercooled layer cloud

    Get PDF
    This article focuses on the characteristics of persistent thin single-layer mixed-phase clouds. We seek to answer two important questions: (i) how does ice continually nucleate and precipitate from these clouds, without the available ice nuclei becoming depleted? (ii) how do the supercooled liquid droplets persist in spite of the net flux of water vapour to the growing ice crystals? These questions are answered quantitatively using in situ and radar observations of a long-lived mixed-phase cloud layer over the Chilbolton Observatory. Doppler radar measurements show that the top 500 m of cloud (the top 250 m of which is mixed-phase, with ice virga beneath) is turbulent and well-mixed, and the liquid water content is adiabatic. This well-mixed layer is bounded above and below by stable layers. This inhibits entrainment of fresh ice nuclei into the cloud layer, yet our in situ and radar observations show that a steady flux of ≈100 m−2s−1 ice crystals fell from the cloud over the course of ∼1 day. Comparing this flux to the concentration of conventional ice nuclei expected to be present within the well-mixed layer, we find that these nuclei would be depleted within less than 1 h. We therefore argue that nucleation in these persistent supercooled clouds is strongly time-dependent in nature, with droplets freezing slowly over many hours, significantly longer than the few seconds residence time of an ice nucleus counter. Once nucleated, the ice crystals are observed to grow primarily by vapour deposition, because of the low liquid water path (21 g m−2) yet vapour-rich environment. Evidence for this comes from high differential reflectivity in the radar observations, and in situ imaging of the crystals. The flux of vapour from liquid to ice is quantified from in situ measurements, and we show that this modest flux (3.3 g m−2h−1) can be readily offset by slow radiative cooling of the layer to space

    Bose-Einstein Condensation and Spin Mixtures of Optically Trapped Metastable Helium

    Full text link
    We report the realization of a BEC of metastable helium-4 atoms (4He*) in an all optical potential. Up to 10^5 spin polarized 4He* atoms are condensed in an optical dipole trap formed from a single, focused, vertically propagating far off-resonance laser beam. The vertical trap geometry is chosen to best match the resolution characteristics of a delay-line anode micro-channel plate detector capable of registering single He* atoms. We also confirm the instability of certain spin state combinations of 4He* to two-body inelastic processes, which necessarily affects the scope of future experiments using optically trapped spin mixtures. In order to better quantify this constraint, we measure spin state resolved two-body inelastic loss rate coefficients in the optical trap

    A solid-state digital temperature recorder for space use

    Get PDF
    A solid-state, digital, temperature recorder has been developed for use in space experiments. The recorder is completely self-contained and includes a temperature sensor; all necessary electronics for signal conditioning, processing, storing, control and timing; and a battery power supply. No electrical interfacing with the particular spacecraft on which the unit is used is required. The recorder is small, light, and sturdy, and has no moving parts. It uses only biocompatible materials and has passed vibration and shock spaceflight qualification tests. The unit is capable of storing 2048, -10 to +45 C, 8-bit temperature measurements taken at intervals selectable by factors of 2 from 1.875 to 240 min; data can be retained for at least 6 months. The basic recorder can be simplified to accommodate a variety of applications by adding memory to allow more data to be recorded, by changing the front end to permit measurements other than temperature to be made, and by using different batteries to realize various operating periods. Stored flight data are read out from the recorder by means of a ground read-out unit

    The Potential For UK Portfolio Investors To Finance Sustainable Tropical Forestry

    Get PDF
    Environmental Economics and Policy, Resource /Energy Economics and Policy,

    High-precision measurements of the co-polar correlation coefficient: non-Gaussian errors and retrieval of the dispersion parameter µ in rainfall

    Get PDF
    The co-polar correlation coefficient (ρhv) has many applications, including hydrometeor classification, ground clutter and melting layer identification, interpretation of ice microphysics and the retrieval of rain drop size distributions (DSDs). However, we currently lack the quantitative error estimates that are necessary if these applications are to be fully exploited. Previous error estimates of ρhv rely on knowledge of the unknown "true" ρhv and implicitly assume a Gaussian probability distribution function of ρhv samples. We show that frequency distributions of ρhv estimates are in fact highly negatively skewed. A new variable: L = -log10(1 - ρhv) is defined, which does have Gaussian error statistics, and a standard deviation depending only on the number of independent radar pulses. This is verified using observations of spherical drizzle drops, allowing, for the first time, the construction of rigorous confidence intervals in estimates of ρhv. In addition, we demonstrate how the imperfect co-location of the horizontal and vertical polarisation sample volumes may be accounted for. The possibility of using L to estimate the dispersion parameter (µ) in the gamma drop size distribution is investigated. We find that including drop oscillations is essential for this application, otherwise there could be biases in retrieved µ of up to ~8. Preliminary results in rainfall are presented. In a convective rain case study, our estimates show µ to be substantially larger than 0 (an exponential DSD). In this particular rain event, rain rate would be overestimated by up to 50% if a simple exponential DSD is assumed

    Hanbury Brown Twiss effect for ultracold quantum gases

    Full text link
    We have studied 2-body correlations of atoms in an expanding cloud above and below the Bose-Einstein condensation threshold. The observed correlation function for a thermal cloud shows a bunching behavior, while the correlation is flat for a coherent sample. These quantum correlations are the atomic analogue of the Hanbury Brown Twiss effect. We observe the effect in three dimensions and study its dependence on cloud size.Comment: Figure 1 availabl

    Laser Techniques in Photovoltaic Research

    Get PDF
    High-power laser pulses were used to replace the conventional high temperature furnace processing for the p-n junction formation step in high speed, low cost solar cell fabrication. Three different approaches to junction formation were tested: (1) laser annealing of ion-implanted Si in which laser radiation is used to remove the radiation damage and to recover the electrical activity in the implanted layer; (2) a process in which a thin film of dopant is first deposited on the substrate and then incorporated into the near-surface region by laser-induced diffusion; and (3) a process in which a heavily doped amorphous silicon layer is deposited on the Si substrate and epitaxially regrown from the melted substrate layer by laser radiation. All three methods were found to provide suitable candidates for high efficiency Si solar cells
    corecore